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Short Photoperiod-Induced Decrease of Histamine
H3 Receptors Facilitates Activation of Hypothalamic
Neurons in the Siberian Hamster
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Nonhibernating seasonal mammals have adapted to temporal changes in food availability through
behavioral and physiological mechanisms to store food and energy during times of predictable
plenty and conserve energy during predicted shortage. Little is known, however, of the hypotha-
lamic neuronal events that lead to a change in behavior or physiology. Here we show for the first
time that a shift from long summer-like to short winter-like photoperiod, which induces physio-
logical adaptation to winter in the Siberian hamster, including a body weight decrease of up to
30%, increases neuronal activity in the dorsomedial region of the arcuate nucleus (dmpARC)
assessed by electrophysiological patch-clamping recording. Increased neuronal activity in short
days is dependent on a photoperiod-driven down-regulation of H3 receptor expression and can be
mimicked in long-day dmpARC neurons by the application of the H3 receptor antagonist, cloben-
proprit. Short-day activation of dmpARC neuronsresults in increased c-Fos expression. Tract tracing
with the trans-synaptic retrograde tracer, pseudorabies virus, delivered into adipose tissue reveals
a multisynaptic neuronal sympathetic outflow from dmpARC to white adipose tissue. These data
strongly suggest that increased activity of dmpARC neurons, as a consequence of down-regulation
of the histamine H3 receptor, contributes to the physiological adaptation of body weight regu-
lation in seasonal photoperiod. (Endocrinology 150: 3655-3663, 2009)

ood intake, growth, and reproduction are fundamental pro-
Fcesses regulated through the hypothalamus (1). The neuroen-
docrine pathways involved are well described, but in addition, in
seasonal mammals temporal inputs related to the ambient day
length impose a further level of regulation on these axes so that
major changes in food intake, body weight, growth, and repro-
duction are seen across an annual cycle in anticipation of climatic
changes (2).

To accommodate a range of seasonal environmental condi-
tions, seasonal mammals have evolved different strategies, from
the extreme modification of physiology and behavior of hiber-
nators to the more modest energy conserving mechanisms of
nonhibernators, such as the Siberian hamster, involving inhibi-
tion of reproduction and reduced energy expenditure (3).
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Whereas deep depression of central nervous system activity
induced by elevated histamine and histamine H3 receptor ex-
pression underpins the extreme response of hibernators (4), the
mechanisms involved in the interface between seasonal timing
and the neuroendocrine pathways that regulate the major phys-
iological axes in nonhibernating mammals are only beginning to
be understood. Recent work has demonstrated that seasonal
availability of hypothalamic thyroid hormone is a key event reg-
ulating seasonal adaptations (5-7), but little is known of the
hypothalamic neuronal responses that lead to a change in be-
havior or physiology.

Recent studies of the Siberian hamster have revealed dynamic
regulation of gene expression in response to prevailing seasonal
photoperiod in a specific region of the arcuate nucleus of the

Abbreviations: aCSF, Artificial cerebrospinal fluid; dmpARC, dorsomedial posterior arcuate
nucleus; GABA, y-aminobutyric acid; LD, long day; PRV, pseudorabies virus; SD, short day.
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hypothalamus, the dorsomedial posterior arcuate nucleus (dm-
pARC) (8, 9). This region defined by the photoperiodic regula-
tion of genes for H3 receptors and others (8, 9), lies close to the
third ventricle between Bregma —2.7 through —2.3 mm based on
the mouse brain atlas (10). Of the genes regulated by photope-
riod in the dmpARC, the H3 receptor was found to be substan-
tially decreased in short, winter-like photoperiod (9), suggesting
a key role for histamine signaling through H3 receptors and a
functional reorganization of the dmpARC with a directional
change in photoperiod. Histamine H3 receptors are character-
istically presynaptic in their action, acting as an autoreceptor for
the release of histamine in tuberomamillary neurons and as a
hetero-receptor for the release of a number of neurotransmitters
including y-aminobutyric acid (GABA) (11). Electrophysiolog-
ical recording have characterized inhibition of high-threshold
calcium currents and hyperpolarization due to activation of in-
wardly rectifying potassium currents as potential actions of H3
receptors in the inhibition of neurotransmitter release (12).

In this study, we combined electrophysiological recording
techniques and analysis of the early response gene c-fos, a marker
of cellular activation, to identify the central neural cellular sig-
naling mechanisms in the dmpARC contributing to this behav-
ioral shift to environmental change. Data presented here provide
the first functional analysis of the dmpARC and reveal that this
region of the ARC, which forms a component of the neural cir-
cuits regulating white adipose tissue via the sympathetic nervous
system (13, 14), represents a novel and functionally distinct cell
cluster, whose activity is regulated in a H3 receptor and photo-
period-dependent manner. These findings have important im-
plications for the regulation of seasonal physiology, particularly
adipose stores.

Materials and Methods

Animals

Male Siberian hamsters (Phodopus sungorus) of approximately 4
months of age were obtained from a breeding stock held at the Rowett
Institute. All research using animals was licensed under the Animals
(Scientific Procedures) Act of 1986 and received ethical approval from
the Rowett Institute ethical review committee.

Male Siberian hamsters were individually housed at a constant tem-
perature of 20 C with ad libitum access to food and water. Hamsters held
in long day (LD) photoperiod were exposed to a light/dark cycle of 16-h
light, 8-h darkness. Hamsters in short day (SD) photoperiod were ex-
posed to a light/dark cycle of 8-h light, 16-h darkness. In a basic LD vs.
SD comparison, hamsters were housed in their respective photoperiods
for 14 wk by which time SD housed hamsters have achieved their nadir
of body weight loss. At this time SD housed hamsters had reduced body
weight by approximately 25%. Postmortem analysis was used to verify
the expected SD-induced testicular regression before brains were subse-
quently used for i situ hybridization or electrophysiological recordings.
In the switchback experiment, hamsters were housed in their respective
photoperiods for 14 wk before transferring SD-exposed hamsters back
to LD photoperiod. One group of hamsters were killed by cervical dis-
location on the day of transfer and represent wk 0 of the switchback to
LD. Groups of hamsters were then killed 2, 4, and 6 wk later.

For analysis of gene expression over a circadian cycle, hamsters held
inLD or SD for 14 wk were killed at 3-h intervals over a 24-h period. This
and previous studies have not found evidence of any effect of time of day
on gene expression in the dmpARC. Therefore, hamsters were killed at
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midlight phase or ZT3 for in situ hybridization and electrophysiological
studies.

In situ hybridization

In situ hybridization with a riboprobe for the detection of c-fos and
the histamine H3 receptor was performed as described previously (15)
with a *3S-labeled antisense riboprobe. Slides were apposed to film for
7 d. Quantification of c-fos mRNA expression was by image analysis as
described previously (5). Histological location of c-fos or H3 receptor
expression was obtained by emulsion coating slides (LM 1 emulsion; GE
Healthcare, Amersham, UK) with development 21 d later.

Immunohistochemistry

Immunohistochemistry was performed on free floating sections cut at
30 pwm as described previously (16). The primary antibody was a cross-
reacting antihuman c-Fos antibody (Ab-5; Calbiochem, San Diego, CA)
and was used ata 1:4000 dilution. Incubation with the primary antibody
was for 48 h.

Pseudorabies virus (PRV) tracing from white adipose
tissue

These experiments have been described in detail elsewhere (14). All
procedures were approved by the Georgia State University Institutional
Animal Care and Use Committee and are in accordance with Public
Health Service and U.S. Department of Agriculture guidelines. Briefly,
hamsters were exposed to a LD photoperiod (16 h light, 8 h dark cycle;
lights on at 0200 h) from birth and kept at 21 = 2 C. PMI Rodent Diet
no. 5001 (Purina, St. Louis, MO) and tap water were provided ad libitum
throughout the study. Hamsters were single housed 1 wk before inguinal
white adipose tissue PRV injections.

Hamsters were anesthetized with pentobarbital sodium (50 mg/kg)
and the target incision area over the rear haunch area was shaved and
wiped with 70% ethanol. An incision was made at the dorsal hind limb
of the animal and lateral to the spinal column that continued rostrally
and then ventrally to the ventral hind limb. Care was taken with the depth
of the incision so as to not damage the underlying fat pad and vasculature.

PRV injections

Once the inguinal white adipose tissue pad was exposed, a series of
injections of PRV 152 (generous gift of Lynn Elmquist, Princeton, NJ)
was made using a 1.0-pl microsyringe at five loci within the fat pad (1.5 X
10® pfu/ml; 150 nl/loci) to evenly distribute the virus. The incision was
closed with sterile wound clips and nitrofurazone powder was applied to
minimize the risk of sepsis. The animals were then transferred to clean
cages for 6 d, the postinoculation survival time for infection to reach the
rostral forebrain from these fat pads in this species.

Six days after PRV injections, animals were given an overdose of
pentobarbital sodium (300 mg/kg ip) and perfused transcardially with
heparinized (0.02 %) saline and phosphate buffered (0.1 M; pH 7.4) para-
formaldehyde (4% wt/vol). The brains were extracted and postfixed in
the same fixative overnight at 4 C and sunk in sucrose (30% wt/vol;
with 0.1% sodium azide). The brains were sliced at 30 um using a
freezing stage sliding microtome along the coronal plane and kept in
cryoprotectant until processed for immunohistochemistry to detect
PRV labeling.

Immunohistochemistry for single-label PRV

Brain sections were rinsed multiple times in PBS (0.1 m; pH 7.4) and
then incubated in the primary antibody (rabbit anti-PRV; Rb132;
1:10,000; a generous gift of Lynn Enquist, Princeton, NJ) overnight. The
secondary antibody (goat antirabbit; 1:500; Vector Laboratories, Bur-
lingame, CA) was applied for 2 h, and then the sections were placed in
avidin-biotin complex (Vector) for 1 h. The specific labels were detected
using diaminobenzidine (0.1 mg/ml; Sigma, St. Louis, MO) as the chro-
mogen in the presence of hydrogen peroxide (0.0025%). All steps in the
immunohistochemistry procedure were performed at 22 C. The sections
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were mounted onto gelatin-coated slides and air dried. Staining for PRV
was observed from the level of the preoptic area rostrally and through the
brain stem caudally using a BX41 microscope (Olympus, Tokyo, Japan).
Images were captured digitally with an Olympus DP70 camera and ac-
quired using Adobe Photoshop (version 6.0; San Jose, CA). A mouse
brain atlas was used as a guide to identify brain regions (17). To deter-
mine the percentage of cells infected by PRV, PRV-immunostained cells
were counted in every sixth section of 25 uM sections taken through the
arcuate nucleus in three different LD hamsters. The sub-divisions of the
arcuate nucleus were based on those of Franklin and Paxinos (10) with
the exception of the region termed the dmpARC.

Electrophysiology

Slice preparation

Whole-cell electrophysiological recordings from neurons in the
arcuate nucleus in isolated brain slices were obtained using methods
similar to those described in detail previously (18-20). The brain was
rapidly removed from hamsters maintained under LD or SD condi-
tions for 14 wk. Coronal 350-pum slices containing the dmpARC were
cut from the isolated brain using a Vibratome (series 1000; Intracel,
Royston, UK). Slices were maintained at room temperature in oxy-
genated artificial cerebrospinal fluid (aCSF) for at least an hour before
recording.

Recording and analysis

For recording, slices were transferred to a custom-made recording
chamber and continuously perfused at room temperature with aCSF of
the following composition (in millimoles): 127.0 NaCl, 1.9 KCl, 1.2
KH,PO,, 26.0 NaHCO3, 10.0 p-glucose, 1.3 MgCl,, 2.4 CaCl,, equil-
ibrated with 95% O,, 5% CO, (pH 7.3-7.4). Recordings were obtained
from neurons located in the dmpARC using axopatch-1D amplifiers
(Axon Instruments, Foster City, CA). Patch pipettes were pulled using a
horizontal puller (Sutter Instrument Co., Novato, CA) from thin-walled
borosilicate glass (Harvard apparatus, Ltd., Edenbridge, Kent, UK) with
resistances between 4 and 7 MQ) when filled with electrode solution. The
pipette solution comprised (in millimoles); 140.0 potassium gluconate,
10.0 HEPES, 10.0 KCI, 1.0 EGTA, 4.0 Na-ATP (pH 7.4). Current and
voltage data were displayed on a digital oscilloscope (Gould DSO1602)
and stored on DAT-tape (Biological DTR-1204; Intracel) and as a digital
file on the computer. For data analysis, signals were digitized at 2-10
kHz, stored, and analyzed on a personal computer running pClamp8
software (Axon Instruments).

Drugs and solutions

Drugs used were imetit and clobenpropit (Tocris Bioscience, Bristol,
UK). These were chosen on the basis of their affinity and ability to inhibit
(imetit) cAMP activation by the cloned Siberian hamster H3 receptors
(long and short splice variants) or for clobenpropit, antagonism of R-
methylhistamine inhibition of cAMP stimulation by forskolin (Ref. 9 and
Barrett, P., unpublished data). Although both ligands have been reported
to have agonist activity at the histamine H4 receptor, activity at this
receptor is ruled out in these studies as H4 receptors are not expressed in
the brain (21, 22). Stock solutions of the drugs were made in distilled
water before dilution in aCSF. All drugs were bath applied from reser-
voirs connected to the aCSF flow line by manually operable three-way
valves.

Statistical analyses

Allvaluesare expressed as mean = SEM. The two-tailed Student’s # test
was used for all statistical analysis in the paired and independent con-
figuration as appropriate. All statistics were performed on a personal
computer running Microsoft Excel (Richmond, CA).
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Results

Photoperiodic regulation of c-Fos and innervation of
white adipose tissue by hypothalamic dmpARC neurons

In situ hybridization studies using an antisense c-fos ribo-
probe on brain sections from Siberian hamsters held in LD pho-
toperiod (16 h light, 8 h dark) or SD photoperiod (8 h light, 16 h
dark) for 14 wk revealed expression of the immediate early gene
c-fos in the dmpARC of SD hamsters, with no detectable expres-
sion in LD hamsters (Fig. 1, A and B). This suggests selective
activation of neurons in the dmpARC of SD hamsters. Immu-
nohistochemical localization of c-Fos protein confirmed expres-
sion exclusively in SD hamsters consistent with ¢-fos mRNA
up-regulation (Fig. 1C). To eliminate the possibility of changes
in c-fos expression reflecting differences in circadian expression
between the two lighting schedules, in situ hybridization was
performed on brain sections from hamsters culled at 3-h intervals
over a 24-h period. No c-fos expression was observed at any time
during the circadian cycle in LD, whereas expression was ob-
served at all time points in SD with no strong circadian vari-
ation, suggesting constitutive expression in the dmpARC (Fig.
1D). Analysis of c-fos expression in hamsters switched from
SD to LD following 14 wk of SD photoperiod exposure re-
vealed a rapid decline to almost undetectable levels of c-fos
expression by 6 wk of LD exposure, with an inverse relation-
ship to the photoperiod-driven testicular and body weight
change (Fig. 1E).

Song and Bartness (14) previously demonstrated sympathetic
innervation of white adipose tissue using the retrograde tract
tracing ability of PRV injected into adipose tissue of the hamster.
Analysis of brain sections from these experiments revealed that
dmpARC neurons are infected by PRV, demonstrating sympa-
thetic innervation of white adipose tissue by neurons originating
in the dmpARC (Fig. 2, A and B). Counting of PRV infected
neurons in sub-divisions of arcuate nucleus (Fig. 2) identify ap-
proximately 14% of all PRV infected neurons to be located in the
dmpARC (Table 1).

Photoperiod regulates the activity of neurons in the
dmpARC

Whole-cell patch clamp recording techniques on in vitro
hypothalamic brain slice preparations revealed that sponta-
neous action potential firing was significantly higher in SD
than LD dmpARC neurons (Fig. 3A), average firing frequency
amounting to 3.6 = 0.5 Hz in SD compared with 0.7 = 0.1 Hz
in LD neurons (n = 50, P < 0.001, independent two tailed
student # test; Fig. 3D). Increased neuronal activity in SD dm-
pARC neurons was associated with a significant increase in
membrane resistance, amounting to 2730 = 159 MQ in SD
compared with 1764 = 79 MQ in LD (n = 50, P < 0.001, Fig.
3,B-D). Increased activity in SD dmpARC neurons was there-
fore consistent with observations of increased c-fos expres-
sion in these animals and consistent with a mechanism involv-
ing inhibition or down-regulation of one or more conductances,
resulting in increased spontaneous activity in SD dmpARC
neurons. This observation together with our previous report
of photoperiod-dependent down-regulation of mRNA for his-
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FIG. 1. Neuronal activation, indicated by c-fos expression, in the dmpARC correlates with a LD to SD shift in photoperiod. A, Autoradiography of c-fos antisense riboprobe in
situ hybridization to Siberian hamster brain sections housed in LD and SD photoperiod, respectively. Arrow indicates dmpARC. B, Emulsion-coated sections of LD and SD brain
sections, respectively, enlarged to show the hybridization signal in the region of the dmpARC (arrow). C, Immunohistochemistry on perfused LD and SD. Siberian hamster brain
sections with a c-Fos antibody (dark brown) in the region of the dmpARC. Arrow indicates example of immunostained c-Fos positive neuron. D, Analysis of c-fos expression
over the course of a 24-h light-dark cycle. Shown are the values of c-fos expression in a SD light-dark cycle. No difference in the expression was observed in a 24-h LD light-
dark cycle. E, Graph plotting the inverse relationship of c-fos expression to photoperiod changes in testis weight and body weight. Scale bars (B and C), 20 um.

tamine H3 receptors after a switch from LD and SD photo-  H3 receptors modulate photoperiod-regulated activity
period (9) led to the hypothesis that changes in the functional ~ of dmpARC neurons

expression of H3 receptors contribute to changes in activity of The H3 receptor agonist, imetit (200 nMm), applied to hypo-
dmpARC neurons. thalamic slices inhibited spontaneous action potential discharge

FIG. 2. Retrograde labeling of arcuate nucleus neurons after injection of PRV into adipose tissue fat pads. A-E, Immunostained PRV-infected neurons through the
arcuate nucleus. Subdivisions are indicated. Insert (A) is a dark-field image of an in situ hybridization performed for histamine H3 receptor to illustrate the location of
the dmpARC and the relative locations of the labeled histamine H3 receptor-labeled neurons with PRV-infected neurons. The location defined as the dmpARC is
outlined by a dotted line. F, A higher magnification image of the area boxed in image (B) showing PRV infected neurons in the dmpARC. 3V, Third ventricle; LP, lateral
posterior arcuate nucleus; MP, medial posterior arcuate nucleus; dmp, dorsomedial posterior arcuate nucleus; DM, dorsomedial nucleus; VMH, ventral medial nucleus;
Arc, arcuate nucleus.
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TABLE 1. Percentage of PRV-infected neurons in subdivisions
of the arcuate nucleus

Arcuate nucleus

subdivision Average (%) * sem

Arc 28.10 = 12.83
Arc D 4.47 +1.02
Arc L 10.49 = 1.08
Arc MP 24.00 =4.79
Arc LP 18.59 = 5.54
Arc dmp 14.35 = 2.17
Total 100

The percentage was determined by counting immunostained PRV-infected
neurons in each region of the arcuate nucleus (Arc) in every sixth section of 25
M sections through the arcuate nucleus in three LD Siberian hamsters. The
subdivisions are defined according the mouse brain atlas (10) with the exception
of the dmpARC. Arc D, Dorsal arcuate nucleus; Arc L, lateral arcuate nucleus; Arc
MP, Medical posterior arcuate nucleus; Arc LP, lateral posterior arcuate nucleus.

in LD dmpARC neurons, from 0.54 = 0.14 Hz in control to
0.01 = 0.01 Hz in the presence of imetit (n = 11 of 18). The
response was characterized by a 5.1 = 1.2 mV membrane po-
tential hyperpolarization, from —42.8 = 1.6 to —47.9 = 1.8 mV
in the presence of imetit (n = 11, Fig. 4A), associated with a 28 %
reduction in membrane resistance from 1639 = 270 to 1188 =
183 MQ (Fig. 4, A and C). The H3 receptor antagonist, cloben-
propit (10 uM), induced an increase in suprathreshold neuronal
activity from 0.23 = 0.13t0 0.65 = 0.21 Hzanda4.4 = 0.7 mV
membrane depolarization from a resting membrane potential of
—45.3 = 1.8t0 —40.9 £ 1.6 mV (n = 9 of 14, Fig. 4, B and C).
Clobenpropit-induced depolarization was associated with a
21% increase in membrane resistance from a control value of
1185 +105t0 1432 = 183 MQ (n = 7). In contrast to the effects
of H3 receptor ligands in LD dmpARC neurons, neither imetit
(22 of 23) or clobenpropit (13 of 15) induced significant effects
in SD dmpARC neurons (Fig. 4, A, and B). The firing frequency
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of SD dmpARC neurones before application of imetit was 3.0 =
0.7 and 2.8 = 0.7 Hz in the presence of imetit (n = 23). The
membrane potential and input resistance of these neurones was
—44.5 £ 0.6 mV (n = 23) and 2021 * 201 MQQ, respectively
(data from Ref. 11), in the absence of imetitand —44.7 = 0.6 mV
and 1927 = 190 MA, respectively, in the presence of the agonist.

Bath application of clobenpropit had no significant effect on
firing frequency in SD hamsters, firing frequency amounting to
3.4 = 0.6 Hz in control and 3.3 *= 0.5 Hz in the presence of
clobenpropit (n = 15). Similarly, clobenpropit was without ef-
fect on membrane potential (control —44.2 + 1.0 mV; cloben-
propit —44.0 = 1.0 mV, n = 15) and input resistance (control
1603 = 107 MQ; clobenpropit 1609 + 83 M(), data from Ref.
11) in SD hamsters. These data suggest that H3 receptors con-
tribute to the maintenance of low levels of activity in LD dm-
PARC neurons and that their subsequent down-regulation in SD
neurons contributes to the increased level of activity associated
with this photoperiod.

Current-voltage relations before and in the presence of imetit
revealed a conductance increase in the presence of the agonist
associated with a reversal potential of —63.1 = 1.6 mV (n = 9,
Fig. 5A). Current-voltage relations in the absence and presence
of clobenpropit revealed a decrease in conductance, consistent
with ion channel closure, and a reversal potential of —62.2 = 9.1
mV (n = 5, Fig. 5B). Thus, the reversal potential for both imetit-
and clobenpropit-induced membrane responses were close to but
negative from the reversal potential of chloride ions under our
recording conditions.

The involvement of GABA 4, and GABAg receptors in the H3-
mediated inhibition of the dmpARC was investigated in three
clobenpropit-excited LD dmpARC neurones. In these neurones,
clobenpropit induced a readily reversible 6.1 = 0.6 mV mem-
brane depolarization from a resting membrane potential of
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FIG. 3. Increased neuronal activity in dmpARC neurons correlates with a LD to SD shift in photoperiod. A, Continuous records from two neurons illustrating
spontaneous action potential firing is significantly lower in LD vs. SD photoperiods. B, Superimposed electrotonic potentials evoked in response to current pulse
injection of variable amplitude (not shown) in LD (top) and SD (bottom) photoperiod revealed increased activity in SD neurons was associated with an increase in input
resistance, suggesting closure of ion channels in SD vs. LD. C, Corresponding voltage-current relations. Note the increased slope in the SD dmpARC neuron, indicating
a higher input resistance (open circles) than the corresponding neuron in LD (closed squares). D, Summary overview of the averaged data for firing rate and membrane
resistance showing the significant increase in these membrane properties in SD vs. LD photoperiods. ***, Significance at P < 0.001).
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FIG. 4. H3 receptor-mediated signaling regulates neuronal activity of dmpARC
neurons in LD but not SD photoperiods. A, Continuous records from two
dmpARC neurons showing the H3 receptor agonist imetit-induced inhibition in a
LD dmpARC neuron (top) but was without effect on a SD dmpARC neuron
(bottom). B, Continuous record showing the H3 receptor antagonist/partial
agonist clobenpropit-induced excitation of a LD dmpARC neuron (top) and was
without effect in SD dmpARC neurons (bottom). The downward deflections in
membrane potential in A (top) and B (bottom) are the result of repetitive
rectangular-wave constant current injections (0.2Hz, —10 pA, 0.5 sec) used to
monitor changes in membrane resistance. C, Bar charts summarizing the effects
of imetit (filled bars) and clobenpropit (diagonal bars) on firing rate (left) and
membrane resistance (right) in LD hamsters. Imetit significantly decreased firing
rate and input resistance, whereas clobenpropit increased firing rate and input
resistance, suggesting mechanisms mediated through opening and closing of ion
channels, respectively. *, P < 0.05; **, P < 0.005.

—53.4 = 49 mV (n = 3). After this response, the membrane
potential recovered to —54.0 = 4.4 mV (n = 3, Fig. 5C). The
membrane depolarization was associated with a 25 % increase in
membrane resistance from a control value of 1157 * 225 to
1455 =303 MQ (n = 3, Fig. 5C). Application of the combination
of bicuculline (antagonist for GABA, receptor) and 2-OH-
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saclofen (antagonist for the GABAy receptor) mimicked the
clobenpropit-induced membrane depolarization previously
observed in the same neurons (Fig. 5C). In the presence of
bicuculline and 2-OH-saclofen the membrane was depolar-
ized by 10.3 = 3.6 mV from a resting membrane potential of
—53.8 = 5.0 mV (n = 3). The depolarization was associated
with a 34 * 13% increase in membrane resistance from a
control value of 917 * 133 to 1240 = 251 MQ (n = 3).
Subsequent application of clobenpropit in the presence of
bicuculline and 2-OH-saclofen failed to induce a membrane
response (Fig. 5C, n = 3; membrane potential: control, —55.9 =
5.5 mV, clobenpropit, —55.3 * 4.4 mV and membrane resis-
tance: control, 965 = 172 M, clobenpropit, 963 + 120 MQ).
These results show that tonic activation of histamine H3 and
GABA receptors under LD conditions underlies the reduced ex-
citability of dmpARC neurons.

Discussion

The arcuate nucleus of the hypothalamus has been the target of
extensive research reflecting its importance in the central control
of energy balance and reproduction and as a center in which these
vital processes are integrated (23-26). Our data show that a
functionally distinct subpopulation of neurons in the dmpARC
is differentially active during different photoperiods and that this
activity is dependent on photoperiod-regulated expression of
histamine H3 receptors.

The early response gene, c-fos, extensively used as a marker
of neuronal activation was constitutively expressed in SD dm-
pARC neurons. Expression of c-fos is inversely related to H3
receptor expression in the dmpARC (9). These data together
with electrophysiological and pharmacological data de-
scribed in the current paper indicate a pivotal role for this
receptor and changes in activity in a functional reorganization
these neurons.

It was important to ascertain the expression of c-fos over the
course of 24 h because previous studies indicated c-fos is ex-
pressed with a circadian rhythm in proopiomelanocortin arcuate
neurons (27, 28) and also to rule a time-dependent effect relative
to seasonal photoperiod. The expression of c-fos was sustained
over the course of a 24-h period without any significant circadian
variation, indicating these neurons are likely to be continually
activated in SD hamsters. No expression was observed at any
time point in LD hamsters. This demonstrates that activity in
dmpARC neurons is photoperiod dependent. Our previous stud-
ies have shown changes in gene expression in the dmpARC are
dependent on the presence of the pineal gland and melatonin
(8, 9), the principal hormone synthesized by the pineal gland
during the hours of darkness. In situ hybridization studies
have not revealed melatonin receptors to be expressed on dm-
pARC neurons, and therefore, these neurons are likely to be
regulated by a more generic mechanism. One candidate for
such a mechanism is the photoperiod regulated availability of
thyroid hormone (5).

Whole-cell patch clamp recording from dmpARC neurons
showed the spontaneous firing rate of these neurons to be



Endocrinology, August 2009, 150(8):3655-3663

Control Current (pA)

-60 -50 -40 -30 -20 -10

A

40 =
e Control 50 3
= |metit 60 5—
70 3
-80 g
-90 3
-100 &
103
1205
Current (pA)
-50,-40,-30,-30 -10, 0
= Control

& Clobenpropit

(AW) [enusiod sueigway

Cc

endo.endojournals.org 3661

Clobenpropit 10mM

_J 20mv

1min

WII-”.. -‘".:h_‘--i L L 5;-|I|]I|i:l i

Bicuculline +
2-OH SAC

Clobenpropit 10mM

Clobenpropit 10mM

FIG. 5. H3 receptors in LD dmpARC neurons modulate neuronal activity via a chloride-dependent mechanism. A, Samples of a continuous record showing
superimposed electrotonic potentials evoked in response to current injection in the absence (top) and presence of imetit (bottom). Right, Corresponding voltage-current
relations (control, closed squares; imetit, open circles). B, Samples of a continuous record showing superimposed electrotonic potentials evoked in response to current
injection in the absence (top) and presence of clobenpropit (bottom). Right, Corresponding voltage-current relations (control, closed squares; clobenpropit, open
circles). Note plots in both A and B intersect around —60 mV, close to the reversal potential for chloride ions under our recording conditions. C, Top trace,
depolarization of dmpARC neurones by clobenpropit; middle trace, the application of a combination of bicuculline and 2-OH-saclofen mimicked the clobenpropit-
induced membrane depolarization previously observed in the same neurons (top trace). Subsequent application of clobenpropit in the presence of bicuculline and 2-
OH-saclofen failed to induce a membrane response. Bottom trace Upon washout of bicuculline and 2-OH-saclofen, the clobenpropit responsiveness was restored.
Shown is a representative trace (one of three) of responses to drug applications performed in a dmpARC neuron.

increased by 500% in SD. H3 receptor agonists and antago-
nists were effective in LD dmpARC neurons, the latter induc-
ing increases in firing rate indicating that a tonic inhibitory
drive mediated through these receptors contributes to sup-
pression of spontaneous activity in the dmpARC in the long,
summer-like, photoperiod. Conversely, H3 receptor ligands
were without effect in SD neurons, consistent with the de-
creased expression of histamine H3 receptors in the short,
winter-like, photoperiod in the dmpARC (9) and increased
electrical activity as a result of the reduced tonic inhibitory
drive mediated through these receptors.

The application of GABA, and GABAj receptor antago-
nists in LD slices mimicked the response obtained with clo-
benpropit, inducing a similar membrane depolarization and
increase in membrane resistance. These data indicate that H3
receptors when expressed in LD, use a mechanism ultimately
involving tonic GABA release and activation of postsynaptic
GABA receptors to suppress the activity of dmpARC neurons.
Further work is required to fully identify the mechanisms and
site of action by which histamine, through H3 receptors, mod-
ifies GABA-mediated synaptic transmission at the level of the
dmpARC.

Tract tracing using the retrograde tracer PRV demonstrates
neurons located in the dmpARC ultimately project to white ad-
ipose tissue. Photoperiod-induced adaptations to seasonal vari-
ation in food availability and temperature, involves a reduction
in food intake and mobilization of fat stores (3). The innervation

of white adipose tissue by sympathetic nerves in turn innervated
by fibers arising from the dmpARC that are constitutively active
is consistent with a role for these neurons in the seasonal mobi-
lization of fat stores. Furthermore, the activity of dmpARC neu-
rons is inversely related to body weight when lean SD hamsters
are switched from SD to LD and increase body weight. The per-
centage infection of dmpARC neurons compares favorably to
larger subdivisions of the arcuate nucleus (10), in which, for
example, 28% of neurons are infected by PRV in the medial
posterior subdivision, in which neuropeptide Y neurons are prin-
cipally located and 18 % are infected by PRV in the lateral pos-
terior subdivision.

The arcuate nucleus and in particular dmpARC neurons,
however, form one component of the neural circuits innervating
and regulating the sympathetic nervous input to white adipose
tissue, identified by PRV track tracing (14). Therefore, dmpARC
neurons likely do not function in isolation but are part of a larger
network of premotor sympathetic neurons arising from other
hypothalamic nuclei including the paraventricular nucleus, dor-
somedial nucleus, and zona incerta, which express melatonin
receptors and which could be influenced directly by the change
in duration of the melatonin signal (11). Nevertheless, our find-
ings are consistent with a role for histamine and H3 receptors in
the regulation of seasonal behavior and physiology as found in
hibernating mammals (4, 29). Furthermore, these data are also
consistent with a role for histamine and H3 receptors in food
intake and body weight. This proposition is supported by several
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lines of evidence including the presence of histaminergic projec-
tions from the tuberomamillary nucleus to hypothalamic centers
involved in regulating satiety, food intake, and energy homeosta-
sis (30), including the arcuate nucleus (31); H3 receptor expres-
sion in hypothalamic areas involved in the control of energy
homeostasis including the dmpARC (7, 32); reduced food intake
after pharmacological inhibition of H3 receptors with antago-
nists (33-36); and proposals that H3 receptor ligands may have
utility as antiobesity and antidiabetic therapies (37, 38). Thus,
we provide data indicating a novel mechanism of action of his-
tamine acting via H3 receptors in a specific subpopulation of
arcuate nucleus neurons that are very responsive to change in
photoperiod as evidenced by a large number of genes showing
dynamic regulation to photoperiod in a single area of the hamster
brain.

Atpresent we do not know whether down-regulation of H3
receptor is independent of, or is solely responsible for, the
emergence of ¢-fos expression or may involve activation of a
cAMP pathway via Gs- and Gq-coupled receptors melano-
cortin 3 receptor, 5-hydroxytryptamine-7, and 5-hydroxy-
tryptamine-2A, which we have recently shown to increase in
expression in the dmpARC in SD hamsters (39). Nevertheless,
taken together, these observations suggest that this specific
area of the brain is important to the coordination of major
adaptations in physiology and behavior associated with the
annual cycle of environmental change in the Siberian hamster.
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